
Efficient Actively Secure OT Extension: 5 Years Later1

(Part I)

Emmanuela Orsini and Peter Scholl

imec-COSIC, KU Leuven and Aarhus University

1Based on the paper Efficient Actively Secure OT Extension, M. Keller, E. Orsini, P. Scholl CRYPTO 2015

Oblivious transfer - Definition

Oblivious Transfer (OT) is a ubiquitous cryptographic primitive designed to transfer specific
data based on the receiver’s choice.

Sender

m0,m1

Receiver

mb, b ∈ {0, 1}

No further information should be learned by any party

Relevant to this workshop: distribution of keys for GC, Threshold ECDSA, etc..

2

Extending oblivious transfer - Motivation
• Impagliazzo, Rudich [IR98]

Black-box separation result → OT is impossible without public-key primitives (?)

• Beaver [Beaver96]: OT can be extended

3

OT-extension: 2003-2020
- Y. Ishai, J. Kilian, K. Nissim, E. Petrank

“Extending oblivious transfers efficiently”, CRYPTO 2003

- G. Asharov, Y. Lindell, T. Schneider, and M. Zohner
More Efficient Oblivious Transfer and Extensions for Faster Secure Computation, ACM CCS 2013

- V. Kolesnikov, R. Kumaresan
Improved OT extension for transferring short secrets, CRYPTO 2013

+ J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra.
A new approach to practical active-secure two-party computation, CRYPTO 2012

+ G. Asharov, Y. Lindell, T. Schneider, and M. Zohner
More efficient oblivious transfer extensions with security for malicious adversaries, EUROCRYPT 2015

+ M. Keller, E. Orsini, P. Scholl
Actively Secure OT Extension with Optimal Overhead, CRYPTO 2015

+ M. Orrù, E. Orsini, P. Scholl
Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection, CT-RSA 2017

x D. Masny, P. Rindal
Endemic Oblivious Transfer, CCS 2019

x C. Guo, J. Katz, X. Wang, Y. Yu
Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers, IEEE S&P 2020

* E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Scholl Efficient Pseudorandom Correlation Generators: Silent
OT Extension and More, CRYPTO 2019

4

OT, Correlated OT and Random OT

Sender

OT

m0

m1

b

mb

Receiver Sender

COT

m0

m0 + ∆

b

mb

Receiver

Standard OT and COT functionality (Sender chosen message)

Sender

ROT

m0

m1

b

mb

Receiver Sender

COT

m0

m0 + ∆

b

mb

Receiver

OT and COT with uniform message security

5

OT, Correlated OT and Random OT

Sender

OT

m0

m1

b

mb

Receiver Sender

COT

m0

m0 + ∆

b

mb

Receiver

Standard OT and COT functionality (Sender chosen message)

Sender

ROT−

m0

m1

b

mb

Receiver Sender

COT−

m0

m0 + ∆

b

mb

Receiver

Endemic security [MR19]

5

OT, Correlated OT and Random OT

Sender

OT

m0

m1

b

mb

Receiver Sender

COT

m0

m0 + ∆

b

mb

Receiver

Standard OT and COT functionality (Sender chosen message)

Sender

ROT−

m0

m1

b

mb

Receiver Sender

COT−

m0

m0 + ∆

b

mb

Receiver

Endemic security [MR19]

5

IKNP OT-extension

Input.

1. m COT

2. RO

Receiver

(x1, . . . , xm) ∈ {0, 1}m

ti,x
ti ∈ {0, 1}k, i ∈ [m]

mxi,i = H(ti, i) + cxi,i

Sender

m0,i,m1,i ∈ {0, 1}k
i ∈ [m], k � m

qi,∆
ti = qi + xi ·∆

Send:
c0,i = H(qi, i) + m0,i

c1,i = H(qi + ∆, i) + m1,i

6

IKNP OT extension - Security

• Assuming that Phase 1. of the protocol is passively/actively secure then

– IKNP is passively/actively secure when H is a random oracle

– For passive security it is enough for H to be a correlation robust hash function [IKNP03]

– For active security H has to be a tweakable correlation robust hash function

• To achieve active security we need:

– Prove that Phase 1 is secure

1. Achieve security against a malicious receiver

– Secure instantiation of the building blocks

7

IKNP OT extension - Security

• Assuming that Phase 1. of the protocol is passively/actively secure then

– IKNP is passively/actively secure when H is a random oracle

– For passive security it is enough for H to be a correlation robust hash function [IKNP03]

– For active security H has to be a tweakable correlation robust hash function

• To achieve active security we need:

– Prove that Phase 1 is secure

1. Achieve security against a malicious receiver

– Secure instantiation of the building blocks

7

Proctecting against a malicious receiver - Attack

t1,1 + x1 ·∆1 . . . tκ1,k + ·x1 ·∆k

t2,1 + x2 ·∆1 . . . tκ2,k + x2 ·∆k

t3,1 + x3 ·∆1 . . . tκ3,k + tx3 ·∆k

... . . .
...

...
. . .

...

... . . .
...

tm,1 + xm ·∆1 . . . tm,k + xm ·∆k





q1 = t1 + x1 ·∆

q2 = t2 + x2 ·∆

q3 = t3 + x3 ·∆

...

qm = tm + xm ·∆

8

Protecting against a malicious receiver - Attack

t1,1 + ∆1 tκ1,k

t2,1 t2,2 + ∆2 . . . tκ2,k

t3,1 tκ3,k

...
... . . .

...

...
...

. . .
...

...
... . . .

...

tm,1 tm,k + ∆k





q1 = t1 + (∆1, 0, . . . , 0)

q2 = t2 + (0,∆2, 0, . . . , 0)

q3 = t3 + (0, 0,∆3, 0, . . . , 0)

...

• c0,1 = H(q1, 1) + m0,1 = H(t1 + (∆1, 0, . . . , 0), 1) + m0,1, can extract ∆1

• Repeating the attack can recover the entire ∆ and hence all the messages

9

Protecting against a malicious receiver - Consistency check

Input

1. m COT−

2. Check

3. RO

Receiver

(x1, . . . , xm) ∈ {0, 1}m

(xm+1, . . . , xm′) ∈ {0, 1}m
′−m,

m′ −m = k + s

ti,x
ti ∈ {0, 1}k, i ∈ [m′]

Receive χ1, . . . , χm′ ∈ F2k

Send t =
∑
i χiti and x =

∑
i χixi

mxi,i = H(ti, i) + cxi,i

Sender

m0,i,m1,i ∈ {0, 1}k
i ∈ [m′], k � m′

qi,∆
qi + ti = xi ·∆

Compute q =
∑
i χiqi and check that

t = q + x ·∆

c0,i = H(qi, i) + m0,i

c1,i = H(qi + ∆, i) + m1,i

10

Part II: Instantiating the Primitives; and Silent OT Extension

11

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

Input

1. m COT

2. Check

3. RO

Receiver

x1 ∈ {0, 1}

t, x1 ∈ {0, 1}k
t ∈ {0, 1}k

mx1 = H(t, 1)

Sender

q, ∆
q + t = x1 ·∆

m0 = H(q, 1)
m1 = H(q + ∆, 1)

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

Input

1. m COT

2. Check

3. RO

Receiver

x1 ∈ {0, 1}

0 ∈ {0, 1}k
0, x1 = 1

m1 = H(0, 1)

Sender

q, ∆
q = ∆

m0 = H(q, 1)
m1 = H(0, 1)

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

• COT− or ROT− enough for OT and most applications

– But not always: e.g. be careful with ROT− and some PSI protocols

• If true ROT needed, protocols can be modified:

OT− OT-ext−−−−→ COT− coin−−→ ROT

12

Instantiating the Base OTs [Masny-Rindal 19]

Some instantiations allow corrupt parties to bias random-OT outputs

• (OT or OT−)
OT-ext−−−−→ (COT−, ROT− or OT)

• (OT or OT−) 6OT-ext−−−−→ ROT

• COT− or ROT− enough for OT and most applications

– But not always: e.g. be careful with ROT− and some PSI protocols

• If true ROT needed, protocols can be modified:

OT− OT-ext−−−−→ COT− coin−−→ ROT

12

Instantiating the hash function H(x, i) [GKWY 20]

Security requirement: form of correlation robustness

• SHA 256: straightforward, but slow

• Fixed-key block cipher, e.g. AES

– ≈ 10x faster
– Incorporating index i: can be done with one extra AES call [GKWY20]

• What if i is omitted?

– Can lead to attack, depending on base OTs [MR19]

13

Instantiating the hash function H(x, i) [GKWY 20]

Security requirement: form of correlation robustness

• SHA 256: straightforward, but slow

• Fixed-key block cipher, e.g. AES

– ≈ 10x faster
– Incorporating index i: can be done with one extra AES call [GKWY20]

• What if i is omitted?

– Can lead to attack, depending on base OTs [MR19]

13

Instantiating the hash function H(x, i) [GKWY 20]

Security requirement: form of correlation robustness

• SHA 256: straightforward, but slow

• Fixed-key block cipher, e.g. AES

– ≈ 10x faster
– Incorporating index i: can be done with one extra AES call [GKWY20]

• What if i is omitted?

– Can lead to attack, depending on base OTs [MR19]

13

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]

∈ F2

bi

∈ F2k

ri , ri + ∆

ri + ∆ · bi
OT

As vectors: variant of vector-OLE with bi ∈ F2

+r + ∆ · b=∆ · b r

Silent OT: compress vector-OLE with a pseudorandom correlation generator (PCG)

14

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]

∈ F2

bi

∈ F2k

ri , ri + ∆

ri + ∆ · bi
OT

As vectors: variant of vector-OLE with bi ∈ F2

+r + ∆ · b=∆ · b r

Silent OT: compress vector-OLE with a pseudorandom correlation generator (PCG)

14

Silent OT Extension: a Different Approach to Correlated OT [BCGIKS19]

∈ F2

bi

∈ F2k

ri , ri + ∆

ri + ∆ · bi
OT

As vectors: variant of vector-OLE with bi ∈ F2

+r + ∆ · b=∆ · b r

Silent OT: compress vector-OLE with a pseudorandom correlation generator (PCG)

14

From a PCG to Silent OT Extension

1. Setup protocol for generating keys [BCGIKRS19, SGRR19]

– 2-round setup for puncturable PRF

2. Malicious security [BCGIKRS19,YWLZW20]

– Consistency check (similar to [KOS15]), < 10% overhead

15

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

limited to quadratic stretch

G can be sparse ⇒ faster

Security as in [Ale03]

+ ≈ $

generator matrix G

parity check matrix H

Dual-LPN:

arbitrary polynomial stretch

H must be dense; use quasi-cyclic codes

Security as in BIKE, HQC schemes

≈ $

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

limited to quadratic stretch

G can be sparse ⇒ faster

Security as in [Ale03]

+ ≈ $

generator matrix G

parity check matrix H

Dual-LPN:

arbitrary polynomial stretch

H must be dense; use quasi-cyclic codes

Security as in BIKE, HQC schemes

≈ $

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

limited to quadratic stretch

G can be sparse ⇒ faster

Security as in [Ale03]

+ ≈ $

generator matrix G parity check matrix H

Dual-LPN:

arbitrary polynomial stretch

H must be dense; use quasi-cyclic codes

Security as in BIKE, HQC schemes

≈ $

16

Security of Silent OT: variants of Learning Parity with Noise

Primal-LPN:

limited to quadratic stretch

G can be sparse ⇒ faster

Security as in [Ale03]

+ ≈ $

generator matrix G parity check matrix H

Dual-LPN:

arbitrary polynomial stretch

H must be dense; use quasi-cyclic codes

Security as in BIKE, HQC schemes

≈ $

16

Comparing practical, actively secure OT extension protocols
128-bit security; estimates for 10 million random OTs

Reference Silent Rounds Communication Computation Based on

[KOS15] 7 3/5∗ 160 MB ≈ 0.2s crh
[BCGIKRS19] 3 2/4∗ 80 kB ≈ 2.0s QC-reg-LPN, crh
[YWLZW20] 3 O(1) 2.4 MB ≈ 0.3s sparse-reg-LPN, crh
[YWLZW20] 3 O(1) 2.1 MB ≈ 0.2s sparse-LPN, crh

∗ passive/active; crh = correlation robust hash function

17

Conclusion

• Pitfalls when implementing OT extension

– Take care with hashing, and security of random OT

• Many flavours of OT extension to choose from:

– Correlated OT, random OT
– 1-out-of-2, 1-out-of-N
– IKNP-style, silent

18

